# Why unbaised estimator?

In introductory statistics courses, we often focus on unbiased estimators such as the sample variance, $$S^2 = \frac{\sum(X_i - \bar X)^2}{n - 1}$$ rather than a more initiative estimator $$\hat \sigma^2 = \frac{\sum(X_i - \bar X)^2}{n}.$$

The common argument is that $S^2$ is unbiased whereas $\hat \sigma^2$ is biased for estimating $\sigma^2$. While it is true, this statement is a bit over-stressed. A more statistical way to evaluate performance of estimators is to compare the mean squared error (MSE) of the estimators.

### Normal Population

If the population is normal, using the fact that $\sum(X_i - \bar X)^2 / \sigma^2 \sim \chi^2_{n-1}$, one could conclude that $Var[\sum(X_i - \bar X)^2] = 2(n-1) \sigma^4$ thus $$MSE(S^2) = \frac{2 \sigma^4}{n-1}.$$ and $$MSE(\hat \sigma^2) = Var(\hat \sigma^2) + Bias(\hat \sigma^2)^2 = \frac{2 (n-1) \sigma^4}{n^2} + \left[\frac{-\sigma^2}{n}\right]^2 = \frac{(2n-1) \sigma^4}{n^2}.$$

As $MSE(\hat \sigma^2) < MSE(S^2)$, we conclude that $\hat \sigma^2$ is a better than estimator than $S^2$ for normal data.

### How about when the population is not normal?

There are a few online resources that have already covered this case.

We need $Var\left[\sum(X_i - \bar X)^2\right]$ to compute $MSE(S^2)$ and $MSE(\hat \sigma^2)$ and $$Var\left[\sum(X_i - \bar X)^2\right] = E\left[\left(\sum(X_i - \bar X)^2\right)^2\right] - (n-1)^2\sigma^4.$$

Let $Z_i = X_i - \mu$, $\mu = E(X_i)$, $\sigma^2 = Var(X_i)$ and the kurtosis $\kappa = E Z_i^4/\sigma^4$,

\begin{align} E\left[\left(\sum(X_i - \bar X)^2\right)^2\right] &= E\left[\left( \sum (X_i-\mu)^2 - n (\bar X - \mu)^2 \right)^2\right] \\ &= E\left[\left( \sum Z_i^2 - n (\bar Z)^2 \right)^2\right] \\ &= E\left[(\sum Z_i^2)^2\right] - \frac{2}{n} E \left[ (\sum Z_i^2) (\sum Z_i)^2\right] + \frac{1}{n^2} E\left[(\sum Z_i)^4 \right]. \end{align}

The first term

$$E\left[(\sum Z_i^2)^2\right] = E\left[\sum Z_i^4 + \sum_{i\ne j} Z_i^2 Z_j^2 \right] = n \kappa \sigma^4 + n(n-1) \sigma^4.$$

The second term,

\begin{align} E \left[ (\sum Z_i^2) (\sum Z_i)^2\right] &= E \left[ (\sum Z_i^2) (\sum Z_i^2 + \sum_{i\ne j} Z_i Z _j)\right] \\ &=E \left[\sum Z_i^4 + \sum_{i\ne j} Z_i^2 Z_j^2 + \sum_k \sum_{i\ne j} Z_k^2 Z_i Z_j \right] \\ &= n \kappa \sigma^4 + n(n-1) \sigma^4. \end{align}

The third term,

\begin{align} E\left[(\sum Z_i)^4 \right] &= E[\sum Z_i^4 + 4 \sum_{i \ne j} Z_i^3 Z_j + 3 \sum_{i \ne j} Z_i^2 Z_j^2 + 6 \sum_{i \ne j \ne k} Z_i^2 Z_j Z_k + \sum_{i \ne j \ne k \ne l} Z_i Z_j Z_k Z_l ] \\ &= E[\sum Z_i^4 + 3 \sum_{i \ne j} Z_i^2 Z_j^2] \\ &= n \kappa \sigma^4 + 3n(n-1) \sigma^4. \end{align}

Therefore,

\begin{align} E\left[\left(\sum(X_i - \bar X)^2\right)^2\right] &= \frac{\sigma^4}{n} \left[(n^2 - 2n + 1) \kappa + n^2(n-1) - 2 n(n-1) + 3(n-1) \right] \\ &= \frac{(n-1)\sigma^4}{n} \left[(n-1) \kappa + n^2 - 2n + 3)\right] \end{align} and \begin{align} Var\left[\left(\sum(X_i - \bar X)^2\right)^2\right] &= \frac{(n-1)\sigma^4}{n} \left[(n-1) \kappa + n^2 - 2n + 3)\right] - (n-1)^2 \sigma^4 \\ &= \frac{(n-1)\sigma^4}{n} \left[(n-1) \kappa - n + 3 \right]. \end{align}

Finally,

$$MSE(S^2) = \frac{\sigma^4}{n(n-1)} \left[(n-1) \kappa - n + 3 \right] = \sigma^4\left[\frac{\kappa}{n} - \frac{n-3}{n(n - 1)}\right]$$ and $$MSE(\hat \sigma^2) = \frac{(n-1)\sigma^4}{n^3} \left[(n-1) \kappa - n + 3 \right] + \left[\frac{-\sigma^2}{n}\right]^2 = \sigma^4\left[ \frac{(n-1)^2}{n^3} \kappa - \frac{n^2-5n + 3}{n^3}\right].$$

Some algebra shows that $MSE(\hat \sigma^2) < MSE(S^2)$ for all $n$ when $\kappa > 1.5$. Most common distributions have kurtosises greater than 1.5. A noticeable exception is the Bernoulli distribution with $1/3<p<2/3$. Nevertheless, in practice, we don’t directly estimate the variance of the Bernoulli distribution but to estimate $p$ directly.

### Conclusion

There are really not much reasons to use sample variance.

##### Randy Lai
###### Visiting Professor in Statistics

My background is in statistics and I am a programming enthusiast.